hbase参数优化-hbase优化配置(5-14-26)
更新时间:2024-06-25 分类:HBase 浏览量:2
HBase本文目录一览:
- 1、淘宝为什么使用HBase及如何优化的
- 2、HBase的合并与拆分机制是否矛盾?如何理解这两个机制
- 3、HBase性能优化-Rowkey&列族设计
- 4、hbase中的数据以什么形式存储
淘宝为什么使用HBase及如何优化的
1、数据查询模式已经确定,且不易改变,就是说hbase使用在某种种特定的情况下,且不能变动。告诉插入,大量读取。因为分布式系统对大量数据的存取更具优势。尽量少的有数据修改。
2、对象存储:HBase可以作为中等对象存储,对HDFS存储文件起到缓冲过渡的作用,减轻了NAMENODE元数据维护的压力。消息/订单存储:因为HBase提供低延时、高并发的访问能力,所以可以用于电商平台等场景的消息和订单存储。
3、HBase 不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.所谓非结构化数据存储就是说HBase是基于列的而不是基于行的模式,这样方面读写你的大数据内容。
HBase的合并与拆分机制是否矛盾?如何理解这两个机制
HBase依赖Zookeeper提供消息通信机制。与FUJITSU Cliq等商用大数据产品不同,HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统。
问题解析:对于数据写入很快的集群,还需要特别关注一个参数:hbase.hstore.blockingStoreFiles,此参数表示如果当前hstore中文件数大于该值,系统将会强制执行compaction操作进行文件合并,合并的过程会阻塞整个hstore的写入。
HBase还引入了“协处理器”(coprocessors)这一概念,允许在HBase进程中执行用户代码。这基本上与关系型数据库中的触发和预存进程相同。目前,Cassandra还没有类似HBase协处理器的功能。
基于这种思路,如果HBase无法完全满足业务的需求,就在应用程序层次做一些设计或者优化工作,以最终满足业务的需求。
● 不同的存储类型,例如,纯文本文件、HBase 中的文件。● 将元数据保存在关系数据库中,大大减少了在查询过程中执行语义检查的时间。● 可以直接使用存储在Hadoop 文件系统中的数据。
HBase性能优化-Rowkey&列族设计
必须在设计上保证RowKey的唯一性。由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。设计的RowKey应均匀的分布在各个HBase节点上,避免数据热点现象。
必须在设计上保证RowKey的唯一性。由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。设计的RowKey应均匀的分布在各个HBase节点上, 避免数据热点现象。
HBase性能优化-Rowkey&列族设计必须在设计上保证RowKey的唯一性。由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。
我们先来看.META.表,假设HBase中只有两张用户表:Table1和Table2,Table1非常大,被划分成了很多Region,因此在.META.表中有很多条Row用来记录这些Region。
访问HBASE table中的行,只有三种方式:通过单个RowKey访问、通过RowKey 的range(正则)、全表扫描。
hbase中的数据以什么形式存储
由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。设计的RowKey应均匀的分布在各个HBase节点上,避免数据热点现象。
HBase是一个列式存储的分布式数据库,它支持的数据格式包括以下几种:字符串类型(String):HBase中的字符串类型是最常见的一种数据类型,可以存储任何字符串,不论是ASCII字符还是Unicode字符。
HBase是介于MapEntry(key&value)和DBRow之间的一种数据存储方式。hbase使用的是jdk提供的ConcurrentSkipListMap,并对其进行了的封装,Map结构是KeyValue,KeyValue的形式。Concurrent表示线程安全。
因为hbase是以文件的形式存储数据,最大文件句柄数影响着hbase的并发量。
HBase采用了类似Google Bigtable的数据模型,即一个稀疏的、分布式的、持久化的多维映射表,每个表都由行键、列族、列限定符和时间戳组成。