-hbase外部数据同步效率的简单介绍(3-9-43)
更新时间:2024-06-12 分类:HBase 浏览量:2
HBase本文目录一览:
- 1、hbase使用面向行的存储方式
- 2、如何加快hbase读取数据的效率
- 3、hbase的主要用途是什么
- 4、两个互信集群怎么实时同步两者的hbase数据库中的数据
- 5、HBase性能优化-Rowkey&列族设计
- 6、hbase采用了什么样的数据结构?
hbase使用面向行的存储方式
1、HBase采用了列式存储的方式,将数据按列存储,适合存储大规模、稀疏的数据。传统数据库则采用了行式存储,将数据按行存储,适合存储结构化的数据。
2、hbase使用的是jdk提供的ConcurrentSkipListMap,并对其进行了的封装,Map结构是KeyValue,KeyValue的形式。Concurrent表示线程安全。
3、数据模型:HBase采用列式存储模型,数据被组织成行和列的形式,每一行都有一个唯一的行键来标识。行键是按照字典顺序排序的,方便进行范围查询。每个列族包含一系列列,列被动态定义,可以根据实际需要灵活增减。
如何加快hbase读取数据的效率
1、region下的StoreFile数目越少,HBase读性能越好 Hfile可以被压缩并存放到HDFS上,这样有助于节省磁盘IO,但是读写数据时压缩和解压缩会提高CPU的利用率。
2、Bloom Filter是一种快速的数据过滤技术,可以帮助HBase快速地过滤掉无效的查询请求,提高查询效率。MemStore是一种缓存机制,可以帮助HBase加速数据写入,提高数据写入效率。
3、Base中单表的数据量通常可以达到TB级或PB级,但大多数情况下数据读取可以做到毫秒级。HBase是如何做到的哪?要想实现表中数据的快速访问,通用的做法是数据保持有序并尽可能的将数据保存在内存里。HBase也是这样实现的。
4、例如,如果你需要分析用户的年龄分布,你只需要读取“年龄”这一列的数据,而不是每个用户的所有信息。这大大提高了读取效率,降低了I/O成本。
5、对HBase的读写操作,实际上就是对这张表进行增删改查操作。 对于写操作,HBase提供了Put操作。一个Put操作就是一次写操作,它将指定Row Key的数据写入到HBase中。
6、生成HFile文件 Bulk Load的第一步会执行一个Mapreduce作业,其中使用到了HFileOutputFormat输出HBase数据文件:StoreFile。HFileOutputFormat的作用在于使得输出的HFile文件能够适应单个region。
hbase的主要用途是什么
1、HBase的主要用途是作为大数据存储系统,用于存储非结构化和半结构化的稀疏数据。 大数据存储:HBase是一个分布式、可伸缩的大数据存储系统,能够存储数十亿行甚至更多的数据。
2、用户画像 比如大型的视频网站,电商平台产生的用户点击行为、浏览行为等等存储在HBase中为后续的智能推荐做数据支撑。
3、HBase 是典型的 NoSQL 数据库,通常被描述成稀疏的、分布式的、持久化的,由行键、列键和时间戳进行索引的多维有序映射数据库,主要用来存储非结构化和半结构化的数据。
4、HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
两个互信集群怎么实时同步两者的hbase数据库中的数据
想问下原来数据库中的数据会不会有更新和删除,如果有的话,想实时同步到hive中很难。另外即使能实时同步到hive中,hive中分析查询也速度也比较慢的。
copyTable也是属于HBase数据迁移的工具之一,以表级别进行数据迁移。copyTable的本质也是利用MapReduce进行同步的,与DistCp不同的时,它是利用MR去scan 原表的数据,然后把scan出来的数据写入到目标集群的表。
使用 导入:hadoop jar /../hbase/hbase-.jar import mytest /export/mybakup 导出:hadoop jar /../hbase/hbase-.jar import mytest /import/mybackup 直接将数据导出到hdfs目录中,当不指定file前缀时。
HBase性能优化-Rowkey&列族设计
必须在设计上保证RowKey的唯一性。由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。设计的RowKey应均匀的分布在各个HBase节点上,避免数据热点现象。
必须在设计上保证RowKey的唯一性。由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。设计的RowKey应均匀的分布在各个HBase节点上, 避免数据热点现象。
HBase性能优化-Rowkey&列族设计必须在设计上保证RowKey的唯一性。由于在HBase中数据存储是Key-Value形式,若向HBase中同一张表插入相同RowKey的数据,则原先存在的数据会被新的数据覆盖。
我们先来看.META.表,假设HBase中只有两张用户表:Table1和Table2,Table1非常大,被划分成了很多Region,因此在.META.表中有很多条Row用来记录这些Region。
访问HBASE table中的行,只有三种方式:通过单个RowKey访问、通过RowKey 的range(正则)、全表扫描。
HBase的Rowkey是按照ASCII有序设计的,我们在设计Rowkey时要充分利用这点。比如视频网站上对影片《泰坦尼克号》的弹幕信息,这个弹幕是按照时间倒排序展示视频里,这个时候我们设计的Rowkey要和时间顺序相关。
hbase采用了什么样的数据结构?
1、综上所述,HBase采用了LSM-Tree、Bloom Filter、MemStore和Compaction等多种数据结构和技术,以实现高并发、高吞吐量的分布式存储和查询功能。
2、hbase的核心数据结构为LSM树。LSM树分为内存部分和磁盘部分。内存部分是一个维护有序数据集合的数据结构。
3、与nosql数据库们一样,RowKey是用来检索记录的主键。