-hbase同步写入的简单介绍(8-4-72)
更新时间:2024-06-05 分类:HBase 浏览量:2
HBase本文目录一览:
- 1、SparkSQL同步Hbase数据到Hive表
- 2、如何把redis的数据实时的同步到hdfs或者hbase上
- 3、HBase写数据的异常问题以及优化
- 4、hbase是怎么进行读写的
- 5、六、HBase写入流程
SparkSQL同步Hbase数据到Hive表
1、很多早期用户还会在数据仓库分析数据之前,采用Hadoop集群和NoSQL数据库存储数据。这些应用使用起来都很简单,就像用Hadoop分布式文件系统(HDFS)存储数据一样,也可以通过Hive,HBase,Cassandra和其他NoSQL技术建立更复杂的关联。
2、Spark SQL与Hive On Spark是不一样的。Spark SQL是Spark自己研发出来的针对各种数据源,包括Hive、JSON、Parquet、JDBC、RDD等都可以执行查询的,一套基于Spark计算引擎的查询引擎。
3、key=value 来设定。对于 SQLContext,唯一可用的方言是 “sql”,它是 Spark SQL 提供的一个简单的 SQL 解析器。在 HiveContext 中,虽然也支持”sql”,但默认的方言是 “hiveql”,这是因为 HiveQL 解析器更完整。
4、Iceberg官网定义:Iceberg是一个通用的表格式(数据组织格式),提供高性能的读写和元数据管理功能。 Iceberg 的 ACID 能力可以简化整个流水线的设计,传统 Hive/Spark 在修正数据时需要将数据读取出来,修改后再写入,有极大的修正成本。
5、Spark on Hive是以Spark角度看Hive是数据源,在Spark中配置Hive,并获取Hive中的元数据,然后用SparkSQL操作hive表的数据并直接翻译成SparkRDD任务。Hive只是作为一个Spark的数据源。
6、同理,spark的conf也是在/etc/spark/conf。
如何把redis的数据实时的同步到hdfs或者hbase上
导入 ./hbase org.apache.hadoop.hbase.mapreduce.Driver import 表名 数据文件位置 其中数据文件位置可为本地文件目录,也可以分布式文件系统hdfs的路径。
读取数据的时候先从redis里面查,若没有,再去数据库查,同时写到redis里面,并且要设置失效时间。
插入时同步,比如先更新了oracle,再更新redis,这个要靠代码逻辑来做。谁先谁后得看设计了。
方案1 (推荐学习:Redis视频教程)做缓存,就要遵循缓存的语义规定:读:读缓存redis,没有,读mysql,并将mysql的值写入到redis。写:写mysql,成功后,更新或者失效掉缓存redis中的值。
答案是肯定的,下面通过canal结合Kafka来实现mysql与redis之间的数据同步。架构设计 通过上述结构设计图可以很清晰的知道用到的组件:MySQL、Canal、Kafka、ZooKeeper、Redis。
确认容器内的Redis和数据库已经启动并运行正常。 在web应用的配置文件中添加Redis和数据库的连接信息,包括主机名、端口号、用户名、密码等。
HBase写数据的异常问题以及优化
1、HBase数据写入通常会遇到两类问题,一类是写性能较差,另一类是数据根本写不进去。
2、BloomFilter的数据存在StoreFile的meta中,一旦写入无法更新,因为StoreFile是不可变的。
3、对于读端,捕获异常后,可以采取休眠一段时间后进行重试等方式。3)当然,还可以根据实际情况合理调整hbase.client.retries.number和hbase.client.pause配置选项。
hbase是怎么进行读写的
所以hbase大多数读要走磁盘,所以读很慢。 每次刷写会生成新的Hfile,Hfile很小并且数量多的时候会影响查询的速度。所以要进行合并。
HBase应用举例 Hbase适合需对数据进行随机读操作或者随机写操作、大数据上高并发操作,比如每秒对PB级数据进行上千次操作以及读写访问均是非常简单的操作。淘宝指数是Hbase在淘宝的一个典型应用。
hbase客户端通过rpc调用将put、delete数据请求提交到对应的regionserver,regionserver对请求进行处理,并将数据最终写入hfile中,进行持久化保存。hbase为了保证随机读取的性能,所以hfile里面的rowkey是有序的。
MemStore 无论是对 HBase 的写入还是读取性能都至关重要,其中 flush 操作又是 MemStore 最核心的操作。
HBase将数据分布在多台服务器上,通过水平扩展的方式来应对海量数据的存储需求。它使用了类似于Google的Bigtable的数据模型,将数据按照行和列的方式进行存储,支持快速的随机读写操作。
六、HBase写入流程
1、对于写操作,HBase提供了Put操作。一个Put操作就是一次写操作,它将指定Row Key的数据写入到HBase中。
2、和读相比,HBase写数据流程倒是显得很简单:数据先顺序写入HLog,再写入对应的缓存Memstore,当Memstore中数据大小达到一定阈值(128M)之后,系统会异步将Memstore中数据flush到HDFS形成小文件。
3、首先Hbase是依赖于HDFS和zookeeper的。 Zookeeper分担了Hmaster的一部分功能,客户端进行DML语句的时候,都是先跟ZK交互。