hbase数据格式-hbase的数据压缩(6-12-72)
更新时间:2024-09-01 分类:HBase 浏览量:4
HBase本文目录一览:
- 1、独立的HBase实例解压缩,解压错误问题,怎么解决
- 2、传统的行存储和(HBase)列存储的区别
- 3、Hbase和传统数据库的区别(hbase与传统的关系数据库的区别)
- 4、hbase采用了什么样的数据结构?
- 5、hbase的主要用途
独立的HBase实例解压缩,解压错误问题,怎么解决
第一步骤复制相关jar包 cp -r $HADOOP_HOME/lib/native/Linux-amd64-64/* $HBASE_HOME/lib/native/Linux-amd64-64/ 这里需要注意下,有些版本在安装过程中,没有这个Linux-amd64-64这个目录,需要手工创建下。
lzo 是压缩文件。 一般 Linux 下面的压缩都是流压缩,也就是只能压缩一个文件。这种文件是没办法看内容的,只能直接解压缩。 图形界面双击即可。
计算能力动态可伸缩,可满足用户业务需求的变化。
传统的行存储和(HBase)列存储的区别
1、列存储不同于传统的关系型数据库,其数据在表中是按行存储的,列方式所带来的重要好处之一就是,由于查询中的选择规则是通过列来定义的,因此整个数据库是自动索引化的。
2、存储模式:传统数据库中是基于行存储的,而HBase是基于列进行存储的。表字段:传统数据库中的表字段不能超过30个,而HBase中的表字段不作限制。
3、列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。简单来说两者的区别就是如何组织表。1)行存储的写入是一次完成。
4、图1-1所示为行式存储和列式存储的示意图,一张table包含5个字段(列)即rowid、date/time、customer name以及quantity,共7行,图中的红色箭头表示存储顺序。
Hbase和传统数据库的区别(hbase与传统的关系数据库的区别)
1、数据存储方式不同、适用场景不同。HBase是一种分布式、面向列的NoSQL数据库,而传统数据库通常是基于关系模型的关系型数据库。这两种数据库在数据存储方式上有所区别。
2、存储模式:传统数据库中是基于行存储的,而HBase是基于列进行存储的。表字段:传统数据库中的表字段不能超过30个,而HBase中的表字段不作限制。
3、删除方式不同,在关系数据库中,我们通常通过DELETE语句将指定的记录从表中删除;而在HBase中,删除主要分为逻辑删除和物理删除。
4、HBase 是 Apache 的 Hadoop 项目的子项目,它不同于一般的关系数据库,而是一个适合于非结构化数据存储的数据库。HBase 分布式数据库具有如下几个显著特点。
hbase采用了什么样的数据结构?
综上所述,HBase采用了LSM-Tree、Bloom Filter、MemStore和Compaction等多种数据结构和技术,以实现高并发、高吞吐量的分布式存储和查询功能。
hbase的核心数据结构为LSM树。LSM树分为内存部分和磁盘部分。内存部分是一个维护有序数据集合的数据结构。
与nosql数据库们一样,RowKey是用来检索记录的主键。
HBase数据结构是什么?hbase的核心数据结构为LSM树。LSM树分为内存部分和磁盘部分。内存部分是一个维护有序数据集合的数据结构。RowKey与nosql数据库们一样,RowKey是用来检索记录的主键。
解析:HBase是一个开源的非关系型数据库,与传统的关系型数据库不同,它采用列族存储结构,数据以键值对(key-value)形式存储。
而HBase中的数据存储是基于列族(column family)和行键(row key)的,HBase的数据存储结构是按行键排序的有序映射表,可以通过行键的前缀匹配来检索数据。
hbase的主要用途
1、HBase的主要用途是作为大数据存储系统,用于存储非结构化和半结构化的稀疏数据。 大数据存储:HBase是一个分布式、可伸缩的大数据存储系统,能够存储数十亿行甚至更多的数据。
2、HBase 是典型的 NoSQL 数据库,通常被描述成稀疏的、分布式的、持久化的,由行键、列键和时间戳进行索引的多维有序映射数据库,主要用来存储非结构化和半结构化的数据。
3、HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
4、数据存储层:这一层主要负责数据的持久化存储。常用的技术包括HDFS、HBase、Cassandra等。HDFS是一个分布式文件系统,适合存储大量非结构化数据。HBase是一个分布式列存储数据库,适合存储大量结构化数据。